Quadrature formulas with simple Gaussian nodes and multiple fixed nodes
نویسندگان
چکیده
منابع مشابه
Quadrature rules with multiple nodes
In this paper a brief historical survey of the development of quadrature rules with multiple nodes and the maximal algebraic degree of exactness is given. The natural generalization of such rules are quadrature rules with multiple nodes and the maximal degree of exactness in some functional spaces that are different from the space of algebraic polynomial. For that purpose we present a generaliz...
متن کاملWeighted quadrature rules with binomial nodes
In this paper, a new class of a weighted quadrature rule is represented as -------------------------------------------- where is a weight function, are interpolation nodes, are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as that and we obtain the explicit expressions of the coefficients using the q-...
متن کاملKronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients
We continue with analyzing quadrature formulas of high degree of precision for computing the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials, started recently by Bojanov and Petrova [Quadrature formulae for Fourier coefficients, J. Comput. Appl. Math. 231 (2009), 378–391] and we extend their results. Construction of new Gaussian quadrature form...
متن کاملAnti-Gaussian quadrature formulas
An anti-Gaussian quadrature formula is an (n+ 1)-point formula of degree 2n− 1 which integrates polynomials of degree up to 2n+ 1 with an error equal in magnitude but of opposite sign to that of the n-point Gaussian formula. Its intended application is to estimate the error incurred in Gaussian integration by halving the difference between the results obtained from the two formulas. We show tha...
متن کاملQuadrature formulas on the unit circle with prescribed nodes and maximal domain of validity
In this paper we investigate the Szegő-Radau and Szegő-Lobatto quadrature formulas on the unit circle. These are (n + m)-point formulas for which m nodes are fixed in advance, with m = 1 and m = 2 respectively, and which have a maximal domain of validity in the space of Laurent polynomials. That means that the free parameters (free nodes and positive weights) are chosen such that the quadrature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1963
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1963-0157485-3